October 20 2017 00:42:56
Навигация
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
Реализация фильтров на операционных усилителях
Схемы нелинейного преобразования сигналов на ОУ

С ростом порядка фильтра его фильтрующие свойства улучшаются. На одном ОУ достаточно просто реализуется фильтр второго порядка. Для реализации фильтров нижних частот, высших частот и полосовых фильтров широкое применение нашла схема фильтра второго порядка Саллена-Ки. На рис. 17 приведен ее вариант для ФНЧ. Отрицательная обратная связь, сформированная с помощью делителя напряжения R3, ( – 1)R3, обеспечивает коэффициент усиления, равный . Положительная обратная связь обусловлена наличием конденсатора С2. Передаточная функция фильтра имеет вид:

form221.gif (2786 bytes). (21)

Активный фильтр нижних частот второго порядка

Рис.17. Активный фильтр нижних частот второго порядка

Расчет схемы существенно упрощается, если с самого начала задать некоторые дополнительные условия. Можно выбрать коэффициент усиления = 1. Тогда ( – 1)R3 = 0, и резистивный делитель напряжения в цепи отрицательной обратной связи можно исключить. ОУ оказывается включенным по схеме неинвертирующего повторителя. В простейшем случае он может быть даже заменен эмиттерным повторителем на составном транзисторе. При = 1 передаточная функция фильтра принимает вид:

form221a.gif (2358 bytes).

Считая, что емкости конденсаторов С1 и С2 выбраны, получим для заданных значений а1 и b1 (см. (13)):

K0 = 1,

form221b.gif (2187 bytes).

Чтобы значения R1 и R2 были действительными, должно выполняться условие

form221c.gif (1353 bytes).

Расчеты можно упростить, положив R1 = R2 = R и С1 = С2 = С. В этом случае для реализации фильтров различного типа необходимо изменять значение коэффициента . Передаточная функция фильтра будет иметь вид

form221d.gif (2275 bytes).

Отсюда с учетом формулы (13) получим

form221e.gif (1353 bytes),

form221f.gif (1463 bytes).

Из последнего соотношения видно, что коэффициент определяет добротность полюсов и не влияет на частоту среза. Величина в этом случае определяет тип фильтра.

Поменяв местами сопротивления и конденсаторы получим фильтр верхних частот (рис. 18). Его передаточная функция имеет вид:

form221g.gif (3004 bytes)

Активный фильтр верхних частот второго порядка

Рис. 18. Активный фильтр верхних частот второго порядка

Для упрощения расчетов положим = 1 и С1 = С2 =С. При этом получим следующие формулы:

Kбеск = 1, R1 = 2/cCa1, R2 =a1/2cCb1.

Если АЧХ фильтра второго порядка оказывается недостаточно крутой, следует применять фильтр более высокого порядка. Для этого последовательно соединяют звенья, представляющие собой фильтры первого и второго порядка. В этом случае АЧХ звеньев фильтра перемножаются (в логарифмическом масштабе – складываются). Однако следует иметь в виду, что последовательное соединение, например, двух фильтров Баттерворта второго порядка, не приведет к получению фильтра Баттерворта четвертого порядка. Результирующий фильтр будет иметь другую частоту среза и другую частотную характеристику. Поэтому необходимо задавать такие коэффициенты звеньев фильтра, чтобы результат перемножения их частотных характеристик соответствовал желаемому типу фильтра.

Полосовой фильтр второго порядка можно реализовать на основе схемы Саллена-Ки, как это показано на рис. 19. Передаточная функция фильтра имеет вид:

form222.gif (2371 bytes). (22)

Схема полосового фильтра второго порядка

Рис. 19. Схема полосового фильтра второго порядка

Приравнивая коэффициенты этого выражения к коэффициентам передаточной функции (18), получим формулы для расчета параметров фильтра:

fp = 1/2RC; Kp =/(3 –); Q = 1/(3 –).

Недостаток схемы состоит в том, что коэффициент усиления на резонансной частоте Kp и добротность Q не являются независимыми друг от друга. Достоинство схемы – ее добротность изменяется в зависимости от , тогда как резонансная частота от коэффициента не зависит.

Активный заграждающий фильтр может быть реализован на основе двойного Т-образного моста. Хотя двойной Т-образный мост сам по себе является заграждающим фильтром, его добротность составляет только 0,25. Ее можно повысить, если мост включить в цепь обратной связи ОУ. Один из вариантов такой схемы приведен на рис. 20. Сигналы высоких и низких частот проходят через двойной Т-образный мост без изменения. Для них выходное напряжение фильтра равно Uвх. На резонансной частоте выходное напряжение равно нулю. Передаточная функция схемы на рис. 20 имеет вид:

form222a.gif (2551 bytes),

или учитывая, что р= 1/RC,

form223.gif (1889 bytes). (23)

С помощью этого выражения можно непосредственно определять требуемые параметры фильтра. Задав коэффициент усиления неинвертирующего усилителя равным 1, получим Q=0,5. При увеличении коэффициента усиления добротность растет и стремится к бесконечности, если стремиться к 2.

Активный заграждающий фильтр с двойным Т-образным мостом

Рис. 20. Активный заграждающий фильтр с двойным Т-образным мостом

Реализация активных фильтров на основе метода переменных состояния

В схемах фильтров, рассмотренных выше, используется минимальное число элементов (один операционный усилитель на два полюса передаточной функции). Эти схемы, однако, чувствительны к изменениям параметров элементов (особенно при высокой добротности) и не пригодны для построения универсальных программируемых фильтров. Поэтому в составе ИМС фильтров используются схемы, построенные на основе метода переменных состояния. В таких схемах реализуется решение дифференциальных уравнений, описывающих процессы в фильтрах. Схема двухполюсного фильтра, постороенного на основе метода переменных состояния, приведена на рис. 21. Эта схема широко применяется благодаря повышенной устойчивости и легкости регулировки. Схема состоит из двух интеграторов и двух сумматоров. Напряжение на выходе второго сумматора

form223a.gif (1817 bytes).

Поскольку

U2 = –Uвых/S и Uвых = –U1/S (24)

(S=sRfC), передаточная функция фильтра имеет вид:

form225.gif (2231 bytes), (25)

Схема фильтра второго порядка, построенного на основе метода переменных состояния

Рис. 21. Схема фильтра второго порядка, построенного на основе метода переменных состояния

причем Q=R1/RQ, K0=R1/RK. Таким образом, на рис. 21 приведена схема полосового фильтра, параметры которого могут регулироваться независимо друг от друга. Найдем передаточные функции этой схемы относительно выходов U1, U2 и U3. Из (25) с учетом (24) получим:

form225a.gif (2139 bytes),

form225b.gif (2108 bytes),

form225c.gif (2418 bytes).

т.е. схема на рис. 21 в зависимости от того, к какой точке схемы подключен выход, может служить также фильтром нижних частот, фильтром верхних частот и заграждающим фильтром.

Подобные фильтры выпускаются в виде ИМС многими фирмами, например, AF100/150 (National Semiconductor), LTC1562 (Linear Technology) или МАХ274/275 (Maxim). Они имеют перестраиваемую частоту среза до нескольких сотен килогерц, порядок вплоть до восьмого и зачастую программируемый тип фильтра. Недостатком этих схем является необходимость в большом количестве внешних высокоточных элементов. От этого недостатка свободны фильтры на коммутируемых конденсаторах.

  1. Измерительные усилители

Во многих измерительных схемах необходимо измерять разность потенциалов между двумя точками электрической цепи, каждая из которых имеет ненулевой потенциал относительно общей точки измерительной схемы. Для этой цели используются измерительные усилители, которые представляют собой устройства с дифференциальным входом, построенные так, что они усиливают только разность напряжений, поданных на их входы, и не реагируют на синфазное напряжение. В переводной литературе такие усилители часто называются инструментальными усилителями.

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.02 секунд 2,256,574 уникальных посетителей