October 18 2017 02:42:52
Навигация
Авторизация
Логин

Пароль



Вы не зарегистрированы?
Нажмите здесь для регистрации .

Забыли пароль?
Запросите новый здесь.
принцип действия усилителя
ПОЛУПРОВОДНИКОВЫЕ УСИЛИТЕЛИ

Физический  эффект, заложенный в принцип действия усилителя, состоит в преобразовании электроэнергии источника питания в управляемую с помощью входного сигнала небольшой мощности энергию, которая отдается нагрузке. Процесс преобразования неуправляемой мощности источника Pи в имеющую заданные параметры мощность выходного сигнала при воздействии входного сигнала с мощностью P1 < P2, для своего описания требует более сложных моделей, учитывающих взаимосвязь параметров электропитания с сигнальными величинами. Расчет динамического диапазона усиления базируется на расчете внутренних шумов компонентов усилителя с использованием модели, учитывающей источники внутренних шумов и позволяющей анализировать характеристики случайных процессов. Таким образом, в зависимости от поставленных задач при анализе и синтезе усилительных устройств применяется совокупность моделей различной степени сложности.

Большинство усилителей  реализуется на основе каскадной  структуры, базирующейся на представлении его комплексного коэффициента передачи в виде произведения коэффициентов передачи отдельных каскадов

Kу(jω) = K1(jω) K2(jω)… KN(jω).

Если параметры каскадов выбраны таким образом, чтобы минимизировать их взаимное влияние, то допустим подход к формированию ЛАЧХ усилителя путем сложения ЛАЧХ отдельных каскадов. Такой подход существенно упрощает синтез и анализ характеристик. Выбор числа каскадов, их элементной базы и характеристик позволяет получить самые разнообразные усилители для конкретных приложений. Для удобства синтеза выделяют типы каскадов (входные, промежуточные, выходные), предназначенные для решения специфических задач. Входной каскад (предварительный усилитель) обеспечивает согласование усилителя с источником сигнала и фактически определяет шумовые параметры всего усилителя и его динамический диапазон. Промежуточные каскады формируют требуемые частотные характеристики и обеспечивают заданное усиление напряжения. Выходной каскад (усилитель мощности) согласует параметры усилителя с нагрузкой во всем диапазоне ее изменения и выдает необходимую мощность выходного сигнала.

Наряду с транзисторными каскадами усилитель содержит вспомогательные цепи (стабилизированные источники напряжения и тока, схемы межкаскадной связи), которые влияют на параметры усилителей.

В многокаскадном усилителе связь между каскадами может осуществляться через разделительные конденсаторы, с помощью трансформатора или непосредственно. Каждый способ имеет достоинства, недостатки и области применения. Трансформатор может обеспечить хорошее согласование в диапазоне частот, но на низких частотах имеет большие габариты и поэтому применяется крайне редко в основном для подключения низкоомных датчиков к входу предварительного усилителя. Разделительные конденсаторы снижают коэффициент усиления в низкочастотной области и не могут использоваться в усилителях медленно изменяющихся (квазипостоянных) сигналов. В интегральных микросхемах усилителей применяется непосредственная (гальваническая) межкаскадная связь со схемами выравнивания уровней постоянных составляющих без разделительных конденсаторов.

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста, залогиньтесь для добавления комментария.
Рейтинги
Рейтинг доступен только для пользователей.

Пожалуйста, авторизуйтесьили зарегистрируйтесь для голосования.

Нет данных для оценки.

Время загрузки: 0.03 секунд 2,254,911 уникальных посетителей